
www.bsc.es

Hands-on: porting applications to ARM

multicore

PRACE Spring School 2013
New and Emerging Technologies - Programming for Accelerators

Nikola Rajovic, Gabriele Carteni

Barcelona Supercomputing Center

Outline

Simple job submissions

– Intel IMB benchmarks

Tuning

– Synthetic FP micro-benchmarks

Porting (SW stack exploration)

– High-Performance LINPACK

Hands-on happy hour (maybe, if there is enough time)

– For those interested in porting of their own codes

Setup

All examples can be found in

/gpfs/EXAMPLES/PSS2013

Prerequisites

User account – mailed to you

PARAVER (for visualization)

– Installed on your local machine from

• http://www.bsc.es/computer-sciences/performance-tools/downloads

Good will and patience

– Tibidabo cluster is an experimental cluster which never served 40+

users at once.

http://www.bsc.es/computer-sciences/performance-tools/downloads
http://www.bsc.es/computer-sciences/performance-tools/downloads
http://www.bsc.es/computer-sciences/performance-tools/downloads
http://www.bsc.es/computer-sciences/performance-tools/downloads
http://www.bsc.es/computer-sciences/performance-tools/downloads
http://www.bsc.es/computer-sciences/performance-tools/downloads
http://www.bsc.es/computer-sciences/performance-tools/downloads

Outline

Simple job submissions

– Intel IMB benchmarks

Tuning

– Synthetic FP micro-benchmarks

Porting (SW stack exploration)

– High-Performance LINPACK

Hands-on happy hour (maybe)

– For those interested in porting of their own codes

HANDS-ON #1: Excercise 1. Manage your job

Get access to Tibidabo by using the information on the page

that we have provided to you

Copy everything is in:

/gpfs/EXAMPLES/PSS2013/HANDSON-1/*

to somewhere in your $HOME directory

Manage your job "myjob.job"

Modify the content properly, submit it, check the queue, cancel it

(if you want and if you are really fast) and check the output when

it is COMPLETED.

HANDS-ON #1: Excercise 2. Modules

The Intel MPI Benchmark is a suite of benchmarks to assess

performance of the cluster network, MPI library

implementations and compilers on communication

Use the code IMB-MPI1, it is compiled with MPICH2

Check the modules which are loaded, purge them and load

only "mpich2”

HANDS-ON #1: Excercise 3. Single Transfer benchmarks

3.1) PingPong and PingPing within a node

– use total_tasks, cpus_per_task and tasks_per_node properly

3.2) PingPong and PingPing between 2 cpus belonging to

different nodes

hint-1 (runs both at once):

srun ~/IMB-MPI1 PingPong PingPing

hint-2:

use the command "paste" to compare the output

HANDS-ON #1: Excercise 4. Parallel Transfer benchmark

4) Run Parallel Transfer benchmark Sendrecv:

– Try to use different combinations of total_tasks, cpus_per_task and

tasks_per_node and check the output

HANDS-ON #1: Excercise 5. Collective benchmark

5) Run Collective benchmarks Allgather and Alltoall:

– Try to use different combinations of total_tasks, cpus_per_task and

tasks_per_node and check the output

Outline

Simple job submissions

– Intel IMB benchmarks

Tuning

– Synthetic FP micro-benchmarks

Porting (SW stack exploration)

– High-Performance LINPACK

Hands-on happy hour (maybe)

– For those interested in porting of their own/external codes

Synthetic benchmarks

Microkernels

– To test the FP performance of Cortex-A9 CPU

– Developed to see if we can reach peak 1 GFLOPS

– We will use it to test the importance of correct gcc flags

 /gpfs/EXAMPLES/PSS2013/ex2_fp

Sums all elements of an array

– Double-precision FP

– Repeats for a given number of times

1 GFLOPS

– Expected when everything fits into L1

cache

FP addition

double *A;

double accum;

… … …

gettimeofday(&start, 0);

for (j=0; j<t; j++) {

 acum = 0;

 for (i=n; i!=0; i--) {

 acum += A[i];

}

}

gettimeofday(&end, 0);

FP multiply-add

double *A,*B;

double accum;

… … …

gettimeofday(&start, 0);

for (j=0; j<t; j++) {

 acum = 0;

 for (i=0; i<n; i++) {

 acum += A[i] * B[i];

}

}

gettimeofday(&end, 0);

Vector dot product

– Double-precision FP

– Repeats for a given number of times

1 GFLOPS

– Expected when everything fits into

cache

Forgot about GCC flags?

-march=armv7a -mcpu=cortex-a9 -mtune=cortex-a9

– Specifies the target CPU

• gcc chooses the correct instructions to emit

• Activates CPU-specific optimizations

-mfloat-abi=softfp

– Generates HW floating point instructions

– Soft-FP calling conventions (affects function calls)

-mfp=vfpv3-d16

– Specifies floating point hardware that is available in the CPU

The importance of correct flags

Execute synthetic benchmarks

 make

 mnsubmit job.slurm

Observe the difference in reported MFLOPS for different

versions

– ~12x

Still not 1 GFLOPS

– Is the FP pipeline capable of delivering this performance?

Can we achieve 1 GFLOPS?

Yes, but we need to find a way to feed floating point unit

properly with the data…if data reuse is there, obviously we

can do it

– This is what is possible to achieve, any idea?

Outline

Simple job submissions

– Intel IMB benchmarks

Tuning

– Synthetic FP micro-benchmarks

Porting (SW stack usage)

– High-Performance LINPACK

Hands-on happy hour (maybe)

– For those interested in porting of their own codes

High Performance LINPACK

Official Top500 list benchmark

– Rank HPC Machines by the rate of solving the dense systems of linear

equations in double precision arithmetic

– Lets see how good is Tibidabo

Assignment: port and execute the benchmark on Tibidabo

– Source code is provided (hpl-2.1.tar.gz)

– Compile it for OpenMPI

– Input file is provided (HPL.dat)

– Use ATLAS library as CBLAS backend (/gpfs/LIBS/BIN/ATLAS)

 /gpfs/EXAMPLES/PSS2013/ex3_hpl

High Performance LINPACK

Execute Linpack on one node

– Set the block size Nb=160

– Set the problem size as N=X*Nb so that it fits in ~750 MB of memory

– Set the process grid map to P=1 Q=1

– Save the results for the later comparison

High Performance LINPACK

Make two runs of LINPACK with following parameters:

– N to fit in 4*750MB

– Nb=160 and Nb=1600

– P=2 Q=4

– What can you notice?

